Loading...

05 Feb 2026 10:13

Editor's Pick Recommended for You Tech & Start Up

Artificial intelligence is helping Amazon employees flag defective products before they ship

Mohammed Khan spent the last decade building a career at Amazon’s fulfillment centers, helping get everything from books to bookshelves shipped to customers. Now as an assistant general manager of a fulfillment center in Tracy, California, Khan knows what it takes to pick, sort, and pack thousands of packages every day. And Khan understands how to make sure that products arrive undamaged.

“When I joined Amazon, I started off picking products for customer orders and gaining a hands-on understanding of what goes into getting the right product to our customers,” Khan said.

Khan explained that as a product goes through fulfillment center operations, up to five different employees use a six-point visual check to assess whether products it’s damaged. He said it’s a time-consuming task that’s often hard to keep top of mind, because employees rarely find damaged items in Amazon’s inventory.

That’s why a team of scientists at Amazon Fulfillment Technologies in Berlin, Germany, are working hard to help Khan and his colleagues. The researchers are developing advanced artificial intelligence (AI) capabilities that can spot irregularities and flag defective products before they ship.

AWS announces Amazon Bedrock and 3 more generative AI innovations

Services from AWS combine decades of machine learning experience across Amazon with breakthrough technologies poised to transform just about everything.
Read more

Like other sophisticated AI tools, the damage-detecting technology relies on software and lots of data. But damaged products are very rare, which makes the data needed to train the AI scarce. It’s that scarcity of data and the vast scale of Amazon’s diverse inventory that has made AI-driven damage detection so challenging—until now. Last year, the research team determined that they could supply a machine learning model with reference images to teach it how to compare the product it’s “looking at” to an image of what the product should look like. To accomplish this, they use computer vision to scan every item that passes through their warehouse just outside of the German capital. Next, a machine learning model analyzes the scans to discover hidden patterns and continuously improve the system’s ability to detect damage. This approach to machine learning and computer vision gives AI the capability to make the types of subjective decisions about damage that humans make all the time.

“We started by training our machine learner to build its own mental model of item appearance by looking at millions of example images of damaged and undamaged items,” said Jeremy Wyatt, director of Applied Science at Amazon Robotics. “Then, in operation, we show it an image of the specific ‘query’ item and a previous ‘gallery’ image of the same product and the AI model compares the images. This was one of several approaches we took to unlock a big performance improvement.”

Christoph Schwerdtfeger, applied science manager at Amazon Fulfillment Technologies, said that the AI system is three times more effective than manually identifying damaged products. Due to the success, plans are being made to bring the system to other facilities.

“Of course, this technology is only focused on this task, while our operations employees have so much going on each and every day. We plan to expand the use of this technology beyond our testing sites,” said Schwerdtfeger. “We want to deploy our damage-detection software at a dozen operations in North America and Europe before the holiday season. Once in place, the technology will help scan for damage on over 40 million customer products every month, and it will be part of how we make sure people get undamaged gifts this holiday season.”

While the machine learning model will continue to improve as its dataset grows, Schwerdtfeger was quick to point out that the true power of the technology is in the way it helps humans work.

“These models are helpful, but sometimes, they get fooled,” Schwerdtfeger added. “If that happens, we receive immediate feedback from operations employees in Amazon’s fulfillment network. Our damage experts directly teach the AI how to make better decisions in the future. It is this collaboration between humans and machines that leads to much better results for our customers.”

What generative AI means for businesses and how AWS can help

The new AWS Generative AI Innovation Center helps customers successfully build and deploy custom generative AI products and services.

Khan is keen to see how this technology will help drive efficiency in fulfillment centers.

“This tool has the potential to streamline tasks and help us manage cost and delivery time for our customers,” said Khan. “It’s also exciting because of how it can help free up operations employees to stay focused on other core tasks and activities, especially important responsibilities like safety.”

In addition to installing the system in more locations, the Amazon Fulfillment Technologies team is planning to expand the system’s capabilities.

“As we look to future applications of this technology, one possibility is to move beyond the detection of damage before we ship an order,” said Wyatt. “For example, we may be able to identify when and where the damage occurred in the first place.”

(Visited 77 times, 1 visits today)
peri hokiperihokiduta76duta 76ABC1131 - MPO SLOTABC1131 Bandar Slot Togelmix parlay agen slot qrisMPOGALAXYslot thailandide baru untuk memaksimalkan putaran mahjong waysinovasi terbaru dari scatter mahjong naga hitamkesaktian simbol mahjong ways naga emaspengaturan baru tingkatkan kesempatan boost simbol mahjong ways terbesarrahasia terbaru untuk mendapatkan simbol naga emaspendekatan evaluatif tempo spin dadu sicbo pembacaan momentum kemenangan pada mahjong wild 2 duta76 gates of olympusanalisa kombinasi simbol hitam mahjong ways 2 pgsoft baccarat bisa membantu pemain duta76 bermain starlight princesss lebih terukurstrategi bermain santai serta terukur sering dikaitkan dengan rtp live jitu di mahjong wins 3 pragmatic blackjack sweet bonanzaperihoki mahjong ways 2 pgsoft roulette menjadi studi kasus adaptasi strategi setelah evaluasi rtp live wild west goldtaktik jitu menyusun pola bermain stabil di mahjong wins 3 pragmatic blackjack dengan pendekatan tabungan perihoki aztec gemsmahjong wild deluxe perihoki jadi contoh nyata bagaimana rtp live membentuk pola bermain sicbo gates of olympus baruspin singkat di jam hoki mahjong ways 2 pgsoft perihoki baccarat sering berujung tarikan besar sweet bonanzapola paten mahjong wins 3 pragmatic blackjack terkini bikin komunitas pemain perihoki jadi makin aktif starlight princessstrategi analisis menyusun target menang berbasis data rtp live terkini di mahjong ways pgsoft roulette duta76 sbobet88analisa mendalam data rtp live serta respons algoritma dalam sesi mahjong wins 3 pragmatic blackjack wild bounty huntertopologi sistem buffalo king megaways mutakhirstrategi midas fortune analisis indikator presisianalisis momentum balikan rise of samurai evaluasistudi komparatif pola treasure of aztec titik efisienjam pagi ritme candy village target terukurvalidasi mekanik wild bandito data indikator balikantransformasi algoritma great rhino dinamika sesirekonfigurasi strategi nasional evolusi pola bermain indonesiaanatomi komputasi grid bertingkat mahjong ways 2 mekanik kasinoprotokol sesi cuan 2 juta probabilitas scatter hitam mahjong wins 3ketika putaran terasa penuh scatter hitamkeheningan mahjong ways pergeseran perkaliankeheningan terlalu rapi mahjong wins scattermahjong wins berjalan scatter hitam dalamsaat mahjong ways berjalan pelan di scattertanda keras mahjong ways adalah scatter wildstabilitas mahjong wins bongkar scatter hitampoint scatter hitam mahjong wins bisa menangmahjong wins berjalan jalur aman scattermahjong ways berjalan stabil scatter perlahanmahjong ways aman scatter wild awal reelmahjong wins skema brutal agresif scatterperpaduan scatter hitam mahjong cepatputaran lembut mahjong menjadi celah scatterawal tahun cuan scatter hitam mahjong winsaws dimensi tersembunyi algoritma acakaws memahami platform pg soft rtpaws menafsirkan algoritma mahjong winsaws resonansi peluang mahjong wildaws struktur habanero keputusan intuitifaws logika engine super scatter hitamaws logika grid siklus bonus simbolaws rasio ketahanan saldo wins3aws strategi low risk pelajari ritmeaws strategi probabilitas saat scatter menjauhteknik navigasi live casino profesional manajemen risiko akuratmetodologi bermain tenang rtp 7 juta evaluasi sesianalisis sinkronisasi grid rtp mahjong ways 2 mesin kasinokronik keberhasilan 44 juta gaya bermain terukur analisis datastudi kognitif pemain profesional transformasi algoritma dinamisdekonstruksi arsitektur mahjong ways 2 mekanik grid bertingkatpanduan bermain tenang rtp 8 juta tren viralperspektif teknis mahjong wins 3 evolusi pola simboltransformasi rtp keuangan strategi kemenangan terukursignifikansi desain estetika simbol ritme mahjong waysmahjong wins seolah terkendali ritme putaranmahjong wins putaran tenang scatter hitammahjong ways mengalir normal scatter wild arahmahjong ways gejolak scatter wild munculputaran tekanan mahjong wins scatter hitammahjong wins scatter retakkan ritmedibalik putaran scatter hitam mahjong winstak ada riuh di mahjong ways scatter wildmahjong berjalan stabil scatter wild awalketika semua tambil stabil di scatter hitamalur bersih mahjong wins ilusi penentumahjong wins terasa pasti tenang scatterdari putaran aman mahjong ways scattermahjong seolah stabil sejak awal scattersaat mahjong wins menjaga harmoni scatterkeseimbangan dijaga di mahjong wins scattermahjong ways halus aman scatter wildmahjong wins tampil lembut scatter hitamrasa aman terbangun di mahjong waysketika kendali terasa mahjong winsanalisis perilaku pemain pro perihoki penyesuaian algoritma berkelanjutan mahjong ways 2 pgsoft sicbo gates of olympusstrategi adaptif pemain perihoki berpengalaman dalam merespons perubahan algoritma di mahjong wins 3 pragmatic blacjack wild west goldpendekatan analisa perihoki memanfaatkan data rtp live terbaru dalam perencanaan menang mahjong ways 2 pgsoft sicbo starlight princesstaktik sistematis pengelolaan sesi bermain untuk mengoptimalkan fase scatter mahjong wins 3 pragmatic blackjack sweet bonanza perihokipendekatan sistematis pengelolaan sesi bermain duta76 untuk mengoptimalkan fase scatter mahjong wild 2 sicbo gates of olympusmahjong ways 2 pgsoft baccarat duta76 menawarkan pengalaman visual yang mendukung kenyamanan bermain berkelanjutan bagi sweet bonanzakini mahjong wins 3 pragmatic blackjack menghadirkan pengalaman bermain yang terasa lebih santai dan reflektif wild west gold duta76pendekatan santai membuat mahjong ways 2 pgsoft roulette terasa nyaman dimainkan dalam waktu luang perihoki sweeet bonanzaritme permainan mahjong wins 3 pragmatic blackjack membantu pengguna menikmati waktu bermain santai secara mandiri perihoki aztec gemspengalaman bermain mahjong wild deluxe kerap dikaitkan dengan suasana yang lebih rileks digital perihoki sicbo gates of olympusbanyak pengguna menikmati mahjong ways 2 pgsoft baccarat sebagai hiburan digital ringan sehari hari santai online perihoki sweet bonanzacara menikmati mahjong wins 3 mencerminkan perubahan blackjack kebiasaan bermain digital modern masa kini perihoki starlight princessanalisa kombinasi simbol jitu mahjong ways 2 pgsoft membantu pemain bermain lebih terukur di duta76 wild bounty huntertaktik menyusun pola bermain stabil di mahjong wins 3 pragmatic blackjack duta76 dengan pendekatan tabungan digital lucky nekoaws dinamika volatilitas olympus zeusaws ketahanan saldo mahjong waysaws kronologi rtp live mahjongaws pola fase mahjong winsaws transisi sistem rtp mahjongaws analisis waktu bermain malamaws evolusi mekanisme mahjong 2026aws fokus tanpa emosi alur digitalaws menafsirkan dinamika sistem mahjongaws perspektif 2026 teknis mahjongtransisi visual gulungan bawa ritme baru pada mahjong ways 2 rahasia kemenangan yang mengejutkan Top